Circular Conditional Autoregressive Modeling of Vector Fields.
نویسندگان
چکیده
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.
منابع مشابه
Circular CAR Modeling of Vector Fields
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملStability of Mixtures of Vector Autoregressions with Autoregressive Conditional Heteroskedasticity
This paper gives necessary and sufficient conditions for stationarity and existence of second moments in mixtures of linear vector autoregressive models with autoregressive conditional heteroskedasticity. Sufficient conditions are also provided for a more general model in which the mixture components are permitted to exhibit limited forms of nonlinearity. When specialized to the corresponding n...
متن کاملAsymptotic Theory for a Vector Arma-garch Model
This paper investigates the asymptotic theory for a vector autoregressive moving average–generalized autoregressive conditional heteroskedasticity ~ARMAGARCH! model+ The conditions for the strict stationarity, the ergodicity, and the higher order moments of the model are established+ Consistency of the quasimaximum-likelihood estimator ~QMLE! is proved under only the second-order moment conditi...
متن کاملMultivariate autoregressive modeling of time series count data using copulas
We introduce the Multivariate Autoregressive Conditional Double Poisson model to deal with discreteness, overdispersion and both auto and cross-correlation, arising with multivariate counts. We model counts with a double Poisson and assume that conditionally on past observations the means follow a Vector Autoregression. We resort to copulas to introduce contemporaneous correlation. We apply it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmetrics
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2012